FWM Dynamics Under Dual-Pump Thermal Behavior in Silicon Microring Resonator
نویسندگان
چکیده
منابع مشابه
Resolving the thermal challenges for silicon microring resonator devices
Silicon microring resonators have been hailed for their potential use in next-generation optical interconnects. However, the functionality of silicon microring based devices suffer from susceptibility to thermal fluctuations that is often overlooked in their demonstrated results, but must be resolved for their future implementation in microelectronic applications. We survey the emerging efforts...
متن کاملDynamics of microring resonator modulators.
A dynamic model for the transmission of a microring modulator based on changes in the refractive index, loss, or waveguide-ring coupling strength is derived to investigate the limitations to the intensity modulation bandwidth. Modulation bandwidths approaching the free spectral range frequency are possible if the waveguide-ring coupling strength is varied, rather than the refractive index or lo...
متن کاملDextran Modified Silicon Photonic Microring Resonator Sensors
We present a dextran modified silicon microring resonator sensor for high density antibody immobilization. An array of sensors consisting of three sensor rings and a reference ring was fabricated and its surface sensitivity and the limit of detection were obtained using polyelectrolyte multilayers. The mass sensitivity and the limit of detection of the fabricated sensor ring are 0.35 nm/ng mm a...
متن کاملWidely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator.
We propose and demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator microring resonators. The phase-shifting range and the RF-power variation are analyzed. A maximum phase-shifting range of 0-600 degrees is achieved by utilizing a dual-microring resonator. A quasi-linear phase shift of 360 degrees with RF-power variation lower than 2dB and a continuous...
متن کاملCompact optical temporal differentiator based on silicon microring resonator.
We propose and experimentally demonstrate a temporal differentiator in optical field based on a silicon microring resonator with a radius of 40 microm. The microring resonator operates near the critical coupling region, and can take the first order derivative of the optical field. It features compact size thus is suitable for integration with silicon-on-insulator (SOI) based optical and electro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Photonics Journal
سال: 2015
ISSN: 1943-0655
DOI: 10.1109/jphot.2015.2388859